
  
  

 

 
 

15 June 2013 
 
 

Re:  USFS R5 Draft Bio-Regional Assessment 
 
To Whom It May Concern: 
 
The Center for Biological Diversity and the John Muir Project offer the following comments 
regarding the Draft Bio-regional Assessment.  We also will be providing comments for the 
NRVs that the Forest Service has produced and will do so by July 15, 2013. 
 
While we appreciate the opportunity to be part of the overall conversation, we are concerned 
about the manner in which the conversation is happening.  First, there appears to be only one 
narrative that the Forest Service is willing to present – one in which high-severity fire is 
demonized and used as a scapegoat.  As a result, rather than present a nuanced approach to a 
complex situation, the Forest Service time and again presents a generic condemnation, and fear, 
of high-severity fire.   
 
Second, and along the same lines, the Forest Service leaves out citations that do not support their 
particular narrative regarding fire in the Sierra and southern Cascades.  We do not expect the 
Forest Service to adopt our particular view of the fire science any time soon, but we do expect, in 
the interests of scientific integrity, and informed decision-making, that the Forest Service 
acknowledge that there is much they do not know, that there exists extensive literature that does 
not support their narrative, and that the issues are far more complex and nuanced than is 
expressed in the Bio-regional Assessment.  The public can only consider that which it is 
presented, and if all the public is ever told is that high-severity fire is a problem and out of 
control, then that is all the public is likely to ever think.  It appears to us that the Forest Service is 
not interested in a conversation about the substantive scientific issues, and that it is only 
interested in dictating particular outcomes.  Again, we do not expect anyone at PSW to support 
our positions, but our positions are well based in the literature, and therefore, even if PSW 
disagrees with them, they still have an obligation to present them, and to allow the public to learn 
the entire story.   
 
Third, the Assessment states that “the writers reviewed the available scientific information and 
determined which is the most accurate, reliable, and relevant information for the issue.”  That is 
not right to do.  Such an approach allows the Forest Service to pick and choose which science it 
wishes to present to the public.  The Forest Service knows very well that the vast majority of the 
public does not read the scientific journals that cover fire issues, and therefore the public only 
sees what the Forest Service presents.  And if the Forest Service only presents one narrative, then 
that’s all the public will ever absorb.  It is incumbent upon a public agency to present all the 
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information, not just the information that it subjectively chooses as “the most accurate, reliable, 
and relevant information for the issue.”  We therefore request that as we go forward that this 
approach – allowing the Forest Service writers to “review the available scientific information 
and determine which is the most accurate, reliable, and relevant information for the issue” – be 
rejected.   
 
We hope that the Forest Service will revise the Bio-regional Assessment in a way that 
acknowledges the breadth of the literature and allows the public to thereby learn about and 
understand the complexities that we all are challenged with resolving.   
 
We turn now to specific issues by providing quotes from the draft Bio-regional Assessment and 
then addressing them: 
 

 “This landscape was much more diverse, patchy and varied in the past. Now it is much more 
uniform and dense, and more vulnerable to insects, drought, high severity fire, mortality of trees, 
and habitat loss.’ 

 
This statement is interesting because we too believe that the landscape was once much more 
diverse, patchy, and varied.  But this is why fires like the McNally Fire, Chips Fire, and Reading 
Fire are so important—they bring back that very thing by creating a mosaic of burn severities and 
habitat.   
 

 “Fire is one of the most pressing and recurring issues in the bio-region and western United States. 
There are two related wildland fire issues in the bio-region, and in much of the drier portions of 
the west. First, there is a trend of larger, high intensity fires, with greater amounts of high severity 
effects that threaten ecosystems, homes and economies than in past decades.”  
 
This trend does not actually exist in the bio-region.  Hanson and Odion (in press, 2013) conducted 
the first comprehensive assessment of fire intensity since 1984 in the Sierra Nevada using 100% 
of available fire intensity data, and, using Mann-Kendall trend tests (a common approach for 
environmental time series data—one which has similar or greater statistical power than 
parametric analyses when using non-parametric data sets, such as fire data).  They found no 
increasing trend in terms of high-intensity fire proportion, area, mean patch size, or maximum 
patch size.  Hanson and Odion (in press, 2013) checked for serial autocorrelation in the data, and 
found none, and used pre-1984 vegetation data (1977 Cal Veg) in order to completely include any 
conifer forest experiencing high-intensity fire in all time periods since 1984 (the accuracy of this 
data at the forest strata scale used in the analysis was 85-88%).  Hanson and Odion (in press, 
2013) also checked the results of Miller et al. (2009) and Miller and Safford (2012) for bias, due 
to the use of vegetation layers that post-date the fires being analyzed in those studies.  Hanson 
and Odion (in press, 2013) found that there is a statistically significant bias in both studies (p = 
0.025 and p = 0.021, respectively), the effect of which is to exclude relatively more conifer forest 
experiencing high-intensity fire in the earlier years of the time series, thus creating the false 
appearance of an increasing trend in fire severity.  Also, Miller et al. (2012a), acknowledged the 
potential bias that can result from using a vegetation classification data set that post-dates the 
time series.  In that study, conducted in the Klamath region of California, Miller et al. used a 
vegetation layer that preceded the time series, and found no trend of increasing fire severity.  
Miller et al. (2009) and Miller and Safford (2012) did not, however, follow this same approach.  
Hanson and Odion (in press, 2013) also found that the regional fire severity data set used by 
Miller et al. (2009) and Miller and Safford (2012) disproportionately excluded fires in the earlier 
years of the time series, relative to the standard national fire severity data set (www.mtbs.gov) 
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used in other fire severity trend studies, resulting in an additional bias which created, once again, 
the inaccurate appearance of relatively less high-severity fire in the earlier years, and relatively 
more in more recent years.  The results of Hanson and Odion (in press, 2013) are consistent with 
all other recent studies of fire severity trends in California’s forests that have used all available 
fire intensity data, including Collins et al. (2009) in a portion of Yosemite National Park, 
Schwind (2008) regarding all vegetation in California, Hanson et al. (2009) and Miller et al. 
(2012a) regarding conifer forests in the Klamath and southern Cascades regions of California, and 
Dillon et al. (2011) regarding forests of the Pacific (south to the northernmost portion of 
California) and Northwest.   
 

 “These fires are increasingly outside the range of variation of the historic fire regimes for most 
ecosystems.” 
 
No basis is provided for this statement; regardless, the most current fires, such as the Chips fire, 
the Reading fire, and the Barry Point fire, have all burned at predominantly low-moderate 
severity.  Likewise, one of the most recent “large” fires in the southern Sierra, the McNally, also 
burned at predominantly low-moderate severity.  Moreover, the draft Bio-regional Assessment 
fails to meaningfully acknowledge what wildlife biology tells us about the importance of recent 
fires that contained patches of high-severity fire.  For example, while some recent fires have been 
characterized as too large or as containing too high a percentage of high-severity fire (e.g., 
McNally Fire, Moonlight Fire), these same fires can be characterized as ecologically beneficial 
(and necessary from an evolutionary perspective) in light of data regarding wildlife use of the 
post-fire landscape.  In regard to the McNally Fire, one study (Buchalski et al. 2013) found that 
most phonic groups of bats showed higher activity in areas burned with moderate to high-
severity. (See also Malison and Baxter 2010, finding greater bat activity was observed in high-
severity burned riparian habitat within mixed-confer forest than at unburned areas of similar 
habitat in central Idaho).  Similarly, in the McNally area, California spotted owls were found to 
be preferentially selecting high-severity fire areas for foraging (Bond et al. 2009).  And most 
recently, Hanson (in preparation, 2013), using scat-detecting dogs in burned (not salvage logged) 
and unburned areas of the northern Kern Plateau, is finding that: a) fishers select mature/old 
forest both when it is unburned and when it has experienced moderate/high-severity wildland fire; 
b) when near fire edges, fishers select the within-fire side of fire boundaries, rather than avoid 
fires; and c) fishers are using large mixed-severity fire areas (e.g., McNally fire of 2002) over 5-6 
kilometers inside the fire (i.e., over 5-6 km from the nearest edge of the fire perimeter).  While 
these data are as yet unpublished, they are the only data available that actually examine how 
fishers use a post-fire landscape and demonstrate that the Forest Service’s categorical 
assumptions about high-severity fire effects on fisher are off-base.  
 
In the Moonlight Fire area, researchers explained that “[i]t is clear from our first year of 
monitoring three burned areas [Cub, Moonlight and Storrie Fires] that post-fire habitat, especially 
high severity areas, are an important component of the Sierra Nevada ecosystem.” (Burnett et al. 
2010).  They also found that “[o]nce the amount of the plot that was high severity was over 60% 
the density of cavity nests increased substantially,” and that “more total species were detected in 
the Moonlight fire which covers a much smaller geographic area and had far fewer sampling 
locations than the [unburned] green forest.” (Burnett et al. 2010).  Moreover, while the Forest 
Service has characterized the Moonlight Fire as detrimental to spotted owls, the impacts of the 
extensive salvage logging on private lands directly adjacent to the PACs were not accounted for.  
In general as well, it is important to keep in mind that post-fire areas that are manipulated by 
salvage logging and/or by reforestation efforts are, from an ecological perspective, no longer 
valuable as post-fire areas; rather, post-fire salvage logging and reforestation substantially reduce, 
and often locally eliminate, wildlife species strongly associated with the forest habitat created by 
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high-severity fire patches (Hanson and North 2008, Hutto 2008, Burnett et al. 2011, 2012, Seavy 
et al. 2012, Siegel et al. 2012, 2013). 
 
Time since fire provides important insights into the continuum of use of post-fire areas over time 
by different species.  Black-backed woodpeckers, for example, are well known to require areas 
with very high snag densities immediately post-fire – e.g., mature forest that has very recently 
experienced higher-severity fire, and has not been salvage logged (Hanson and North 2008, Hutto 
2008, Saab et al. 2009, Seavy et al. 2012, Siegel et al. 2010, 2011, 2012, 2013). However, “while 
some snag associated species (e.g. black-backed woodpecker) decline five or six years after a fire 
[and move on to find more recent fire areas], [species] associated with understory plant 
communities take [the woodpeckers’] place resulting in similar avian diversity three and eleven 
years after fire (e.g. Moonlight and Storrie).” (Burnett et al. 2012). Burnett et al. (2012) also 
noted that “there is a five year lag before dense shrub habitats form that maximize densities of 
species such as Fox Sparrow, Dusky Flycatcher, and MacGillivray’s Warbler. These species have 
shown substantial increases in abundance in the Moonlight fire each year since 2009 but shrub 
nesting species are still more abundant in the eleven year post-burn Storrie fire. This suggests 
early successional shrub habitats in burned areas provide high quality habitat for shrub dependent 
species well beyond a decade after fire.” (Burnett et al. 2012). Raphael et al. (1987) found that at 
25 years after high-severity fire, total bird abundance was slightly higher in snag forest than in 
unburned old forest in eastside mixed-conifer forest of the northern Sierra Nevada; and bird 
species richness was 40% higher in snag forest habitat. In earlier post-fire years, woodpeckers 
were more abundant in snag forest, but were similar to unburned by 25 years post-fire, while 
flycatchers and species associated with shrubs continued to increase to 25 years post-fire 
(Raphael et al. 1987). In ponderosa pine and Douglas-fir forests of Idaho at 5-10 years post-fire, 
levels of aquatic insects emerging from streams were two and a half times greater in high-severity 
fire areas than in unburned mature/old forest, and bats were nearly 5 times more abundant in 
riparian areas with high-severity fire than in unburned mature/old forest (Malison and Baxter 
2010). Schieck and Song (2006) found that bird species richness increased up to 30 years after 
high-severity fire, then decreased in mid-successional forest [31-75 years old], and increased 
again in late-successional forest [>75 years]). 
 
Even areas that burn at high-severity and then, shortly therafter, burn again at high-severity, are 
ecologically valuable. Donato et al. (2009) found that a high-severity re-burn [high-severity fire 
occurring 15 years after a previous high-severity fire] had the highest plant species richness and 
total plant cover, relative to high-severity fire alone [no re-burn] and unburned mature/old forest; 
and the high-severity fire re-burn area had over 1,000 seedlings/saplings per hectare of natural 
conifer regeneration. Fontaine et al. (2009) found that bird species richness was not significantly 
different between high-severity re-burn, high-severity burn alone, and unburned old-growth 
forest, but was numerically highest in areas burned once by high-severity fire 17-18 years earlier, 
and in high-severity re-burn areas. Total bird abundance was higher in the high-severity fire area, 
at 17-18 years post-fire, than in the unburned old-growth forest [Figs. 3a and 3b] (Fontaine et al. 
2009). 
 

 “Second, there is a significant absence of low and moderate severity fire, in these strongly fire 
adapted forests of the Sierra Nevada.” 
 
This is true.  But it is also true that there is a significant absence of high severity fire.  As found in 
Odion and Hanson (2013), high-severity fire has declined by sixfold since the early 20th 
century in the Sierra Nevada and eastern Oregon Cascades due to fire suppression.  Further, the 
current rate of high-severity fire in mature/old forest in the Sierra Nevada and eastern Oregon 
Cascades is so low, and recent high-severity fire in mature/old forest comprises such a tiny 
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percentage of the overall forested landscape currently (0.66%, or about 1/150th of the landscape), 
that even if high-severity fire in mature/old forest was increased by several times, it would only 
amount to a very small proportional reduction in mature/old forest.  Further, Hanson and Odion 
(2013, in press) found that current high-severity fire rotation intervals for the middle/upper-
montane forests, and the eastern montane forests, of the Sierra Nevada management region 
(which includes the southern Cascades of California and the Modoc Plateau) are 893 and 714 
years, respectively.  These rates are much longer than estimated historical rotation intervals of 
approximately 165 to 435 years for high-severity fire, based upon multiple studies, indicating a 
substantial decline in high-severity fire since the early 20th century when fire suppression policies 
began (Hanson and Odion 2013, in press).   
 
Nor does the Assessment acknowledge that fires like the Chips, Reading, and McNally bring with 
them not just high severity fire, but even more so, bring with them low and moderate severity fire.  
Yet the Forest Service portrays such fires as “bad” when in fact such fires are doing the heavy 
lifting of bringing low, moderate, and high severity fire back to the landscape.  Those facts are 
left out of the Assessment.  Nor does the Forest Service admit that it is partly to blame for the 
lack of more low and moderate severity fire on the landscape—it is the Forest Service that 
suppresses such fires and has focused on mechanical treatments rather than prescribed fire. 

 
 “These two issues are related because suppression of fire has led to significantly less fire than 

once occurred naturally on a frequent basis (Van de Water and Safford 2011) and as a result, 
vegetation is denser, more continuous, and more explosive than ever before (Chapter 3, WIKI; 
Collins and Skinner 2013; Safford 2013b).” 
 
It is true of course that there is significantly less fire than once occurred naturally.  However, to 
say that vegetation is “more explosive” fails to present the actual story.  As we have explained in 
our comments time and again, research has found that forest areas that have missed the largest 
number of fire return intervals in California’s forests are burning predominantly at low/moderate-
severity levels, and are not experiencing higher fire severity than areas that have missed fewer 
fire return intervals (Miller et al. 2012b, Odion and Hanson 2008, Odion et al. 2010, van 
Wagtendonk et al. 2012).  This is important because it means that missed fire return intervals are 
not a reliable indicator of how a forest will burn when fire does again enter a given area.  
 

 “There is a trend of increasing fire severity over the past 10 years or more (Miller et al. 2009).” 
 
As explained above, Hanson and Odion (2013) shows that this is not true and explains what 
Miller et al. 2009 did not. 
 

 “However, the total acreage burning annually is well below historic levels (Stephens et al. 2007; 
Miller et al. 2009; North et al, 2012). “ 

 
This is quite true and yet is not made part of the overall discussion.  This fact is central to any 
meaningful fire discussion and yet it is stated and then essentially ignored. 

 
 “Predicted trends are for longer fire seasons, drier and hotter fire conditions, coupled with 

persistent trends of over-dense and uniform vegetation, all leading to increased trends in 
extensive high severity fires during the peak fire season (Westerling 2006; Westerling and Bryant 
2008; Westerling et al 2011).  
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The Forest Service’s assertions are one-sided in predicting that fire extent and severity will 
increase in future decades, due to climate change.  The Forest Service only cites studies that 
predict increases in future fire, and high-severity fire, and avoids mention of the many scientific 
studies that predict decreased future fire activity as a result of climate change (due to 
warmer/wetter conditions less conducive to fire, as well as to reductions in pyrogenic vegetation).  
This one-sided representation of data makes impossible a well-informed public.  We have already 
provided detailed and extensive citations to studies that predict reduced future fire activity from 
climate change, yet none of that is discussed or addressed.  While no one can know for sure 
whether those who predict increased future fire, or those who predict decreased future fire, will 
be correct, one thing is for certain: any assessment that does not discuss or acknowledge one half 
of an ongoing scientific debate is simply not accurate, and again, this is unfair to the public who 
does not know that it is only being told half the story. 
 

 “Today, there is an imbalance of the types and extent of fire. On one hand, there is an ecological 
“fire deficit” of low and mixed severity fire. On the other hand, there is more high severity fire in 
large patches in low and mid-elevation ecosystems.”  
 
No basis or citation is provided for this assertion.  There is indeed a fire deficit, but the Forest 
Service implies that there is now too much high severity fire when in fact there is much too little.  
Odion and Hanson 2013 found that high-severity fire has declined by sixfold since the early 20th 
century in the Sierra Nevada and eastern Oregon Cascades due to fire suppression.   And as we 
explained in our comments in the living assessment and for the Synthesis, large patches of high-
severity fire provide critical habitat for wildlife and were part of the historic fire regime.  The 
Forest Service has offered no meaningful reason to assume that patches are now somehow too 
big—current fires are instead providing important habitat for post-fire specialists, and even the 
fisher, as well as spotted owls, species the Forest Service assumes are harmed by high-severity 
fire, are using post high-severity areas in the McNally fire..   
 

 “Fire is fundamental in shaping the diversity of habitats, species, and vulnerability to natural 
events such as drought, or insects and pathogens. Generally, if fire and the severity or effects are 
within the natural range of variability, it supports or drives ecological integrity. But there are 
uncertainties defining aspects of the natural range of variability of fire, such as the size and 
frequency of patches of fire of different severities, and the role in critical habitats such as riparian 
areas. Despite these uncertainties, fire is one of the foremost drivers of ecological integrity of 
most ecosystems in the bio-region and is important to understand.” 

 
This is the only time that any nuance enters the Assessment.  Everywhere else the Forest Service 
portrays the situation as though it is fact that current fires are outside the NRV. 

 
 “Recurrent fire kept tree and other plant density lower or patchier, so that when dry summer or 

windy fall conditions occurred, fire swept through with fewer effects (i.e. less large tree kill) than 
what is seen now.” 
 
This is presented as fact but no basis is provided for it.  Current fires are mostly low and moderate 
severity and there is a deficit of high-severity fire just as there is a deficit of low severity fire.  
The concern should be about the lack of fire of all types throughout the Sierra region and 
especially in the central and southern Sierra, where there is currently an extreme dearth of post-
fire habitat. 
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 “It invigorated browse for wildlife (Shaffer and Laudenslayer 2006). It kept levels of insects in 
acorns low for better deer and bear browse (Lake and Long 2013). It recycled nutrients, fertilizing 
soils. It created diverse riparian plant communities (Webster and Halpern 2010), dominated by 
deciduous shrubs and trees that are important for many songbirds, insects, and litter inputs into 
the stream food webs. Native Americans lived with fire and through traditional ecological 
management, utilized it for many life-sustaining purposes, such as: enhancing straight growing 
shrub stems with no insects to make better baskets; improving game forage or plant vigor for food 
sources; reducing habitat for disease- spreading ticks; and clearing around living areas or travel 
routes (Anderson 2006; Lake 2013).” 
 
This is fine, but it fails to also mention all the benefits of high-severity fire.  We have submitted 
extensive science based comments describing this and yet the Forest service has ignored those 
comments.  It is not ok to continue to ignore the science that shows just how good the habitat is 
that has been created by fires such as the McNally, the Moonlight, the Storrie, the Chips, and the 
Reading. 
 
While much of the conservation attention in the Sierra Nevada has focused on iconic conifers like 
giant sequoia (Sequoiadendron giganteum) and old-growth forests generally, complex early seral 
forests (CESFs) created by stand-replacing fire are underappreciated for their unique biodiversity 
(see, e.g., Swanson et al. 2010), and, as such, CESFs are not even included as a habitat type in 
any current vegetation mapping used by the Forest Service (e.g., California Wildlife Habitat 
Relations). Complex early seral forests occupy sites that occur in time and space between a stand-
replacement disturbance and re-establishment of a closed-forest canopy.  Young forests, if 
resulting from purposeful regeneration harvest or from fire salvage harvest, lack the features and 
characteristics of unmanaged forests naturally regenerating from high-severity fire.  CESFs are 
rich in post-disturbance legacies (e.g., very high snag levels) and post-fire vegetation (e.g., native 
fire-following shrubs, flowers, natural conifer regeneration) that provide important habitat for 
countless species and differ from those created by logging (e.g., salvage or pre-fire thinning), 
which are deficient in biological legacies and many other key ecological attributes (see, e.g., 
Table 1 in Swanson et al. 2010, Table 1 in Donato et al. 2012).  Thus, to distinguish early seral 
forests from logged early seral, the term “complex” is used in association with early seral 
produced by natural disturbances.   
 
In the Sierra Nevada, CESFs provide habitat for dependent species like Black-backed 
Woodpeckers.  Post-fire logging and tree planting destroys that habitat, even when only partial 
salvage logging occurs.  In the fall of 2012, the U.S. Forest Service recognized that there is a 
significant concern regarding the conservation of the Black-backed Woodpecker population in 
California and released a Conservation Strategy for this species (Bond et al. 2012).  Among the 
conservation measures were the following: a) identify the areas of the highest densities of the 
largest snags, and do not salvage log such areas; b) if the Forest Service decides to conduct post-
fire logging in a particular area, logging units should not be bigger than 2.5 hectares, or 6.2 acres 
(page 10, Recommendation 1.3); and c) avoid post-fire logging during nesting season, May 1 
through July 31 (page 10, Recommendation 1.5).  The Conservation Strategy is not even 
mentioned in the Draft Bio-regional Assessment.   
 
Siegel et al. (2013) describe in detail the level of snag basal area associated with suitable Black-
backed Woodpecker foraging habitat, concluding that, within the overall home ranges of an 
individual pair, a threshold of about 20 square meters/hectare of snag basal area (i.e., over 87 
square feet/acre), or at least 17 square meters/hectare (at least 74 square feet/acre), represents 
suitable, viable foraging habitat for this species (Siegel et al. 2013, pp. 45, 68-70). Siegel et al. 
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(2013) also found (p. 59) that Black-backed Woodpecker suitable nesting habitat averages 43 
square meters/hectare of recent snag basal area, and ranges from 18 to 85 square meters/hectare.    
 
Siegel et al. (2011) concluded that native fire-following shrubs are vitally important to 
biodiversity in complex early seral forest (CESF) created by high-intensity fire: “Many more 
species occur at high burn severity sites starting several years post-fire, however, and these 
include the majority of ground and shrub nesters as well as many cavity nesters. Secondary cavity 
nesters, such as swallows, bluebirds, and wrens, are particularly associated with severe burns, but 
only after nest cavities have been created, presumably by the pioneering cavity-excavating 
species such as the Black-backed Woodpecker. Consequently, fires that create preferred 
conditions for Black-backed Woodpeckers in the early post-fire years will likely result in 
increased nesting sites for secondary cavity nesters in successive years.” 

 
In addition, the following are some key studies regarding how post-fire logging/artificial-planting 
can harm wildlife—studies which should be discussed in order to meaningfully inform the public 
regarding the severe ecological impacts of post-fire logging and replanting: Hanson and North 
(2008); Hutto (2008); Burnett et al. (2011 [Fig. 11]); and Siegel et al. (2013 [Fig. 13)  
 

 “Very large patches of high severity fire can change ecological function of old forest ecosystems, 
killing most or all large, old trees across large areas, and breaking connectivity (Franklin and 
Fites-Kaufman 1996) of canopied forests for cover and travel of wide-ranging species such as the 
fisher (Zielinski 2013; Keanne 2013).”  
 
This assumption is not borne out by the use of post-fire habitat that has already been explained 
above.  The very fires that the Forest Service is pointing to as “bad” are the very same fires that 
researchers are finding to contribute significantly to biodiversity and ecosystem function.  The 
Forest Service should not continue to pretend otherwise. Moreover, as already explained, both 
fisher and spotted owl are using areas that burned at high-severity. 
 
The draft Assessment routinely refers to patch size being too large and fire being  
“uncharacteristic” but without any meaningful context or basis for that characterization  – the 
literature cited for this proposition does not actually establish that any recent wildfires in the 
Sierras/Cascades are “uncharacteristic.”  In fact, the only thing “uncharacteristic” is the lack of 
fire of all severities.   
 
High-severity fire, as well as large patches of high-severity fire, are an important component of 
not only fir and lodgepole pine forest, but also of mixed-conifer forests in the Sierra/Cascade 
region, and the available literature indicates that a wide range of high-severity fire (extent as well 
as patch size) is ecologically appropriate and acceptable (e.g., Beaty and Taylor 2001, Bekker and 
Taylor 2001, Bekker and Taylor 2010, Collins and Stephens 2010).   
 
Contrary to assumptions (e.g., the 2004 Sierra Nevada Framework), considerable data and 
research exists that indicates that mixed-severity fire: a) is not limited to true fir and lodgepole 
pine and is instead also a natural condition in ponderosa-pine/Jeffrey-pine and mixed-conifer 
forest; b) generally dominated pre-fire suppression fire regimes in these forest types; and c) can 
include a significant proportion of high-severity fire including occasional large high-severity fire 
patches hundreds or thousands of acres in size (Baker 2006, Baker 2012, Baker et al. 2007, Beaty 
and Taylor 2001, Bekker and Taylor 2001, Bekker and Taylor 2010, Brown et al. 1999, Collins 
and Stephens 2010, Colombaroli and Gavin 2010, Hessburg et al. 2007, Iniguez et al. 2009, 
Klenner et al. 2008, Leiberg 1897, 1899a, 1899b, 1899c, 1900a, 1900b, 1900c, 1902, 1903, 
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1904a, 1904b, Nagel and Taylor 2005, Sherriff and Veblen 2007, Shinneman and Baker 1997, 
Show and Kotok, 1924, 1925, Stephenson et al. 1991, Taylor 2002, USFS 1910-1912, Whitlock 
et al. 2008, 2010, Williams and Baker 2010, 2011, 2012a, 2012b, Wills and Stuart 1994). 
 
Beaty and Taylor (2001), in the western slope of the southern Cascades in California, found that 
historic fire severity in mixed-conifer forests was predominantly moderate- and high-severity, 
except in mesic canyon bottoms, where moderate- and high-severity fire comprised 40.4% of fire 
effects [Table 7].  Bekker and Taylor (2001), another study in the western slope of the southern 
Cascades in California, found historic fire severity to be predominantly high-severity in their 
study area [Fig. 2F].  Bekker and Taylor (2010), in mixed-conifer forests of the southern 
Cascades, found reconstructed fire severity to be dominated by high-severity fire effects, 
including high-severity fire patches over 2,000 acres in size [Tables I and II].    
 
Outside of the Cascades, Leiberg (1902), which contains information from the central and 
northern Sierra Nevada, found high-severity fire patches over 5,000 acres in size in mixed-conifer 
forest that had not been logged previously during the 19th century, prior to fire suppression. 
Show and Kotok (1924), in ponderosa pine and mixed-conifer/pine forests of the Sierra Nevada, 
found that high-severity crown fires, though infrequent on any particular area, “may extend over a 
few hundred acres” in patches [p. 31; see also Plate V, Fig. 2, Plate VII, Fig. 2, Plate VIII, Plate 
IX, Figs. 1 and 2, and Plate X, Fig. 1], with some early-successional areas resulting from high-
severity fire patches covering 5,000 acres in size or more [pp. 42-43].  Within unlogged areas, the 
authors noted many large early-successional habitat patches, dominated by montane chaparral and 
young, regenerating conifer forest, and explained that such areas were the result of past severe 
fire because: a) patches of mature/old forest and individual surviving trees were found 
interspersed within these areas, and were found adjacent to these areas, indicating past forest; b) 
snags and stumps of fallen snags, as well as downed logs from fallen snags, were abundant in 
these areas; c) the species of chaparral found growing in these areas are known to sprout 
abundantly following severe fire; and d) natural conifer regeneration was found on most of the 
area [p. 42], often growing through complete chaparral cover [p. 43].  Similarly, Show and Kotok 
(1925) found that within the ponderosa pine and mixed-conifer/pine belt of the Sierra Nevada, 1 
acre out of every 7 on average was dominated by montane chaparral and young regenerating 
conifer forest following high-severity fire [Footnote 2, and Figs. 4 and 5]; and on one national 
forest 215,000 acres out of 660,000 was early-successional habitat from severe fire [p. 17].  
Forest Service Timber Survey Field Notes from 1910-1912 show that surveys were conducted 
within primary forest to evaluate timber production potential in 16.2-ha (40-acre) plots within 
each 259.1-ha (640-acre) section in ponderosa pine and mixed-conifer forest on the westside of 
the Stanislaus National Forest, using one or more 1.62-ha transect per plot.  The surveyors noted 
that surveys for individual tree size, density and species were not conducted in areas that had 
experienced high-severity fire sufficiently recently such that the regenerating areas did not yet 
contain significant merchantable sawtimber. Surveyors also noted that the dominant vegetation 
cover across the majority of many 259.1-ha sections was montane chaparral and young conifer 
regeneration following high-severity fire. For example (from a typical township in the data set): 
a) T1S, R18E, Section 9 (“Severe fire went through [this section] years ago and killed most of the 
trees and land was reverted to brush”, noting “several large dense sapling stands” and noting that 
merchantable timber existed on only four of sixteen 16.2-ha plots in the section); b) T1S, R18E, 
Section 14 (“Fires have killed most of timber and most of section has reverted to brush”); c) T1S, 
R18E, Section 15 (same); d) T1S, R18E, Section 23 (“Most of timber on section has been killed 
by fires which occurred many years ago”); T1S, R18E, Section 21 (“Old fires killed most of 
timber on this section and most of area is now brushland”.)   
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Existing data and research also suggest that Sierra forests were historically structurally complex, 
with a high degree of heterogeneity from natural disturbance, in terms of chaparral patch extent, 
stand structure, density, and species composition—including stands dominated by fir and cedar 
with dense understories as a significant part of the mix in both ponderosa-pine/Jeffrey-pine and 
mixed-conifer forests.  Baker (2012) found that historic mixed-conifer forests contained some 
open and park-like areas, but such areas were a minority. Rather, overall, the area was dominated 
by denser forests with substantial shrub cover and understory conifer density—small trees 
comprised over 50% of all trees on over 72% of the forest (see also Duren et al. 2012.)  Leiberg 
(1902) found that, in mixed-conifer forests in the central and northern Sierra Nevada, while some 
of the areas were open and parklike stands dominated by ponderosa pine, Jeffrey pine, and sugar 
pine, the majority were dominated by white fir, incense-cedar, and Douglas-fir, especially on 
north-facing slopes and on lower slopes of subwatersheds; such areas were predominantly 
described as dense, often with “heavy underbrush” from past mixed-severity fire.  Natural 
heterogeneity, resulting from fire, often involved dense stands of old forest adjacent to snag forest 
patches of standing fire-killed trees and montane chaparral with regenerating young conifers: “All 
the slopes of Duncan Canyon from its head down show the same marks of fire—dead timber, 
dense undergrowth, stretches of chaparral, thin lines of trees or small groups rising out of the 
brush, and heavy blocks of forest surrounded by chaparral.” [p. 171]  Similarly, the USDA 1910-
1912 Timber Survey Field Notes found that historic ponderosa pine and mixed-conifer forests of 
the central/southern Sierra Nevada [western slope] varied widely in stand density and 
composition; open and park-like pine-dominated stands comprised a significant portion of the 
lower montane and foothill zones, but dense stands dominated by fir and cedar, and by 
small/medium-sized trees, dominated much of the middle montane zone (It should be noted that 
the old-growth forests chosen for study by Scholl and Taylor 2010 and Collins et al. 2011 
comprised only a very small portion of the 1910-1912 Stanislaus data set).  Nagel and Taylor 
(2005) noted that “[c]haparral has been replaced by forest and this vegetation change has reduced 
the heterogeneity of the mixed conifer forest landscapes in the Sierra Nevada. . .  Our study 
suggests that maintenance of chaparral should be an integral part of ecosystem restoration plans 
for mixed conifer forest landscapes in the Lake Tahoe basin and northern Sierra Nevada.” 
 
Current rates of high-severity fire (rotation intervals) in the Sierra Nevada and southern Cascades 
are also likely far lower (longer rotation intervals) than historic rates, indicating less high-severity 
fire and therefore a high-severity fire deficit (e.g., Odion and Hanon 2013).  Miller et al. (2012) 
found that the current high-severity fire rotation interval in the Sierra Nevada management region 
overall is over 800 years.  The authors recommended increasing high-severity fire amounts [i.e., 
decreasing rotation intervals] in the Cascades-Modoc region and on the western slope of the 
Sierra Nevada, where the current high-severity fire rotation is 859 to 4650 years [Table 3].  The 
authors noted that “high-severity rotations may be too long in most Cascade-Modoc and westside 
NF locations, especially in comparison to Yosemite . . . .” 

 
 “Other species, such as the black-backed woodpecker are drawn to these freshly burned sites with 

their high prevalence of snags. Other birds increase or are drawn here by the vigorous growth of 
shrubs or hardwood trees, stimulated to sprout by fire (PRBO 2012). 
 
This is inadequate.  It needs to be made clear that bbwos are not just drawn here, this is the heart 
of their existence in terms of where they eat, sleep, and reproduce. A recent Ph.D dissertation, 
(Rota 2013), makes this even more clear as explained below.   Moreover, the Forest Service 
needs to make clear that even small amounts of salvage logging can demean the value of bbwo 
habitat.  
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The Black-backed Woodpecker depends upon areas of dense, mature/old, middle/upper-montane 
conifer forest that has recently (generally within 7 years or so) experienced higher-severity fire 
(generally 50-100% mortality) and has not been subjected to any significant amount of post-fire 
salvage logging (Hutto and Gallo 2006, Hanson and North 2008, Hutto 2008, Siegel et al. 2011, 
Rota 2013, Siegel et al. 2013), relying upon areas with >20 square meters/hectare of recent snag 
basal area for suitable foraging habitat, and >40 square meters/hectare of snag basal area for 
nesting habitat (Siegel et al. 2013).  These conditions comprise moderate- to high-quality Black-
backed Woodpecker habitat.  While Black-backed Woodpeckers may be found nesting, and even 
reproducing, in unburned forests with very high levels of bark beetle mortality, or in lower-
severity prescribed burns, and, on rare occasions, in unburned forests with a scattering of dead 
trees, these areas are deficient in wood-boring beetle larvae (Rota 2013).  Black-backed 
Woodpeckers are highly specialized and adapted to prey upon the large wood-boring beetle 
larvae found predominantly in recent higher-severity wildland fire areas (as opposed to the much 
smaller bark beetle larvae generally inhabiting unburned forests and low-severity prescribed 
burns).  Because of this, and because of much higher predation of juveniles and adults from 
raptors due to the lack of camouflage for Black-backed Woodpeckers in unburned or low-severity 
fire areas relative to higher-severity fire areas (Black-backed Woodpeckers are remarkably 
camouflaged against the charred bark of trees killed in crown fires), local Black-backed 
Woodpecker populations decline steeply in unburned bark-beetle mortality areas or low-severity 
prescribed burn areas, and the data indicate that they need a steady supply of very recent higher-
severity wildland fire areas in dense, mature/old forest to prevent overall population decline (Rota 
2013, Siegel et al. 2013).  The results of Rota (2013) indicate that unburned beetle-kill forests and 
low-severity prescribed burn areas do not support viable populations of Black-backed 
Woodpeckers, but very high snag-density beetle-kill areas do tend to slow the population decline 
of Black-backed Woodpeckers in between occurrences of higher-severity wildland fire (if 
prescribed burns were conducted within the natural fire season, and achieved substantial higher-
severity fire effects, which almost never occurs currently, Rota’s results suggest that this would 
provide suitable habitat).   
 

 “Songbirds and the black-backed woodpecker use other habitats and it is likely that previous, 
highly variable, fine-scale patchiness from varying fire was equally used. 
 
What does this even mean?   That bbwos and other bird species don’t actually need the habitat 
that research shows they highly select for?  If so, such an assertion lacks any basis in the 
literature.  This statement should be removed as it wrongly gives the impression that certain 
species do not in fact need the habitat that research shows them to need. 
 

 “The California spotted owl has a more variable and complex response. Some level of 
predominately low and moderate severity fire may not change reproduction or occupancy of owls, 
and can increase rodent populations that provide food. It is uncertain how much and what kind of 
fire has specific effects but large areas of high severity fire remove nesting habitat for long 
periods until forests can grow and mature.”  

 
This statement fails to present what the literature actually finds regarding spotted owl use of high-
severity fire areas (e.g., Bond et al 2009, Lee et al 2012).   
 

 “In order to look at conditions and trends in fire resiliency across the bio-region, two different 
approaches were applied: fire return interval departure, and fire resiliency index across 
watersheds. For both, the purpose was to define resilience in terms of sustaining ecological 
integrity, the primary intent of the new planning rule.” 
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Neither of these approaches provides meaningful information about how areas will actually burn 
should fire return to them.  Another approach would be to focus on fire rotation.  At its most 
basic, fire rotation is “the time required to burn an area equal to the area of interest.”  Also, while 
fire rotation is often used to describe stand-replacing fire, it is equally relevant to surface-fire, 
since in both cases fires burn over a certain land area.  Fire rotation interval is the only metric that 
directly relates to how long it takes for the entire area in question, on average, to burn (once), and 
therefore can differ significantly from fire return interval (FRI); FRI can often overestimate fire 
frequency because any time a fire occurs in the area of interest, it is recorded as if the entire area 
burned, whereas in reality only a fraction of the area may have burned.  If the objective is to 
address the lack of fire on the landscape – which should be the objective – then it would make 
sense to examine where the fire rotations are the longest relative to what the existing data indicate 
they would have been historically, on average (generally, for mixed-conifer, this would be areas 
with fire rotations that are the “farthest” above about 30 years).  In general, fire rotation 
throughout the Sierras is considerably longer that historically, and therefore the Sierra would 
benefit from actions that put more fire, including mixed-severity fire, on the landscape.  
Moreover, in Thompson et al. 2009, the authors contrast ecological resilience, which pertains to 
the maintenance of the full complement of native biodiversity by maintaining active natural 
disturbance regimes, with engineering resilience, which pertains to the suppression of natural 
disturbance and the habitat structures and complex early-successional habitat created by such 
disturbance. 
 

 “The number of fires in the bio-region that have been of higher severity than expected in recent 
years is increasing and this trend is expected to continue. Recent research demonstrates an 
increased proportion of high-severity fire in yellow pine and mixed-conifer forests in the Sierra 
Nevada from 1984 to 2010 (Miller et al. 2009, Miller and Safford 2012). These studies 
demonstrate that fire sizes and annual area burned have also gone up during that period. Notable 
increases in fire activity are predicted for California. These are driven by projected increases in 
temperature, and decreases in snow pack. To a lesser extent, they are driven by increased fuel 
production from CO2 “fertilization” (Collins and Skinner 2013, Flannigan et al. 2000, Lenihan et 
al. 2003, Lenihan et al. 2008, Westerling et al. 2011). In addition, as human development 
continues in the bio-region, the need to protect lives and property continues to increase (CalFire 
2010).” 
 
Again, this is not actually true. Hanson and Odion (in press, 2013) conducted the first 
comprehensive assessment of fire intensity since 1984 in the Sierra Nevada using 100% of 
available fire intensity data, and, using Mann-Kendall trend tests (a common approach for 
environmental time series data—one which has similar or greater statistical power than 
parametric analyses when using non-parametric data sets, such as fire data).  They found no 
increasing trend in terms of high-intensity fire proportion, area, mean patch size, or maximum 
patch size.  Hanson and Odion (in press, 2013) checked for serial autocorrelation in the data, 
and found none, and used pre-1984 vegetation data (1977 Cal Veg) in order to completely 
include any conifer forest experiencing high-intensity fire in all time periods since 1984 (the 
accuracy of this data at the forest strata scale used in the analysis was 85-88%).  Hanson and 
Odion (in press, 2013) also checked the results of Miller et al. (2009) and Miller and Safford 
(2012) for bias, due to the use of vegetation layers that post-date the fires being analyzed in 
those studies.  Hanson and Odion (in press, 2013) found that there is a statistically significant 
bias in both studies (p = 0.025 and p = 0.021, respectively), the effect of which is to exclude 
relatively more conifer forest experiencing high-intensity fire in the earlier years of the time 
series, thus creating the false appearance of an increasing trend in fire severity.  Interestingly, 
Miller et al. (2012a), acknowledged the potential bias that can result from using a vegetation 
classification data set that post-dates the time series.  In that study, conducted in the Klamath 
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region of California, Miller et al. used a vegetation layer that preceded the time series, and 
found no trend of increasing fire severity.  Miller et al. (2009) and Miller and Safford (2012) did 
not, however, follow this same approach.  Hanson and Odion (in press, 2013) also found that the 
regional fire severity data set used by Miller et al. (2009) and Miller and Safford (2012) 
disproportionately excluded fires in the earlier years of the time series, relative to the standard 
national fire severity data set (www.mtbs.gov) used in other fire severity trend studies, resulting 
in an additional bias which created, once again, the inaccurate appearance of relatively less 
high-severity fire in the earlier years, and relatively more in more recent years.  The results of 
Hanson and Odion (in press, 2013) are consistent with all other recent studies of fire severity 
trends in California’s forests that have used all available fire intensity data, including Collins et 
al. (2009) in a portion of Yosemite National Park, Schwind (2008) regarding all vegetation in 
California, Hanson et al. (2009) and Miller et al. (2012a) regarding conifer forests in the 
Klamath and southern Cascades regions of California, and Dillon et al. (2011) regarding forests 
of the Pacific (south to the northernmost portion of California) and Northwest.   
 

 “To get a sense of the extent to which fire threatens the many important services that are 
provided by our forests in the bio-region, important landscapes that provide these services were 
examined for their risk for uncharacteristic fire that would be detrimental to these services. It is 
clear that a high percentage of these important landscapes are under a threat from 
uncharacteristic fire (Chapter 7, WIKI).” 

 
No meaningful basis is provided for these conclusions as the underlying assumptions about past 
fire, current fire, and fire return, are not valid. 

 
 “Fires are . . . larger, or more severe than they were pre-settlement.” 

 
As has been explained, there is no meaningful basis for this conclusion. 

 
 “large portion of the bio-region, the montane pine and mixed conifer forests, are relatively 

productive in terms of vegetation growth, but because they are dry, decomposition is slow. … 
This results in increasing fuels for fire and the likelihood of high intensity crown fires (Stephens 
et al. 2012) and the likelihood of widespread insect outbreak (Sierra Nevada Conservancy 2012a) 
beyond natural range of variability levels (Chapter 3, WIKI).” 

 
These studies do not actually establish what the Forest Service purports them to establish. 
 

 “Large, high intensity fires threaten to set back large areas of older or mature forest to early seral, 
fragmenting habitat in one year. Similarly, California spotted owl and goshawk are threatened by 
large, high severity fires.” 
 
This statement in relation to fishers and spotted owls find no basis in literature that has actually 
examined fisher or owl use of post-fire landscapes. Hanson (in preparation, 2013), using scat-
detecting dogs in burned (not salvage logged) and unburned areas of the northern Kern Plateau, is 
finding that: a) fishers select mature/old forest both when it is unburned and when it has 
experienced moderate/high-severity wildland fire; b) when near fire edges, fishers select the 
within-fire side of fire boundaries, rather than avoid fires; and c) fishers are using large mixed-
severity fire areas (e.g., McNally fire of 2002) over 5-6 kilometers inside the fire (i.e., over 5-6 
km from the nearest edge of the fire perimeter).  While these data are as yet unpublished, they are 
the only data available that actually examine how fishers use a post-fire landscape.  
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Moreover, the spotted owl literature shows them to be using high-severity areas.   
 

 “Gradual, but steady population declines of California spotted owl over the past 20 years have 
been observed (Keane 2013). Although the distribution of the spotted owl is still intact, there 
have been concerns raised since 1992 about areas where there are low numbers of owls, high 
fragmentation from past, large, high intensity fires, or mixed ownership with less certainty of owl 
habitat management. These were called “areas of concern” in a comprehensive scientific report in 
1992 (Verner et al. 1992).” 

 
It is necessary to address that recent science shows high-severity fires patches to be useful to owls 
and that many areas were salvaged logged thus eliminating or heavily demeaning post-fire owl 
habitat. 

 
 “There has been a disproportionately high concentration of owl nest sites impacted by high 

severity fire in the north in the past decade, primarily from several large fires that burned under 
very hot, dry and often windy conditions in steep terrain. Some birds respond favorably to these 
fires; however, many distributed, smaller large severity patches would provide better connectivity 
across the bio-region, than several large, high severity patches in limited areas. A few high 
severity fires do not contribute as much to connectivity for early seral species, and are detrimental 
to connectivity for late seral forest species.” 
 
This assertion misses the point that more high-severity fire, as well as more low and moderate 
severity fire, is needed across the landscape. Odion and Hanson 2013, for example, explain that 
the current rate of high-severity fire in mature/old forest in the Sierra Nevada and eastern Oregon 
Cascades is so low, and recent high-severity fire in mature/old forest comprises such a tiny 
percentage of the overall forested landscape currently (0.66%, or about 1/150th of the landscape), 
that even if high-severity fire in mature/old forest was increased by several times, it would only 
amount to a very small proportional reduction in mature/old forest, while getting Black-backed 
Woodpecker habitat closer to its historical, natural levels.   

 
 “On the other hand, the trend is for larger patches of uniform, early aged, or early seral vegetation 

to develop after fire. This can be good for the plants and animals in these habitats. The patches 
are often very large, however, compared to historic patterns, and are widely distributed, limiting 
movement of species between them, or “connectivity”. 
 
This claim finds no meaningful basis in the literature and simply reflects the Forest Service’s 
worldview as to fire.   

 
 “Wildland fires are becoming larger, more frequent and of greater severity, which will lead to 

reductions in ecosystem benefits.” 
 

This is egregiously untrue as explained above. 
 

 “Nearly half of the Critical Aquatic Refuges (CARS), 2/3 of the goshawk and fisher locations, 
and more than 80% of the spotted owl and pine marten sites are in landscapes with low to very 
low fire resilience. It is clear that a high percentage of important landscapes are under a threat 
from uncharacteristic fire.” 

 
This should instead state that a high percentage of the Sierra is under threat from a lack of fire, 
including a lack of high-severity fire. 
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